Unlocking the power of semen analysis in primary health care — a path to men’s health and lifestyle transformation

Unlocking the power of semen analysis in primary health care — a path to men’s health and lifestyle transformation

  • Agarwal, A. et al. Male infertility. Lancet 397, 319–333 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Sharlip, I. D. et al. Best practice policies for male infertility. Fertil. Steril. 77, 873–882 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Fisher, J. R. & Hammarberg, K. Psychological and social aspects of infertility in men: an overview of the evidence and implications for psychologically informed clinical care and future research. Asian J. Androl. 14, 121–129 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hammarberg, K., Collins, V., Holden, C., Young, K. & McLachlan, R. Men’s knowledge, attitudes and behaviours relating to fertility. Hum. Reprod. Update 23, 458–480 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Evens E. M. A global perspective on infertility an under recognized public health issue. Carolina Papers International Health No. 18 https://www.scribd.com/document/125595459/A-Global-Perspective-on-Infertility-an-Under-Recognized-Public-Health-Issue-original (2004).

  • Kimmins, S. et al. Frequency, morbidity and equity – the case for increased research on male fertility. Nat. Rev. Urol. 21, 102–124 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Levine, H. et al. Temporal trends in sperm count: a systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries. Hum. Reprod. Update 29, 157–176 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Levine, H. et al. Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum. Reprod. Update 23, 646–659 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cedars, M. I. et al. The sixth vital sign: what reproduction tells us about overall health. Proceedings from a NICHD/CDC workshop. Hum. Reprod. Open. 2017, hox008 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choy, J. T. & Eisenberg, M. L. Male infertility as a window to health. Fertil. Steril. 110, 810–814 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Inhorn, M. C. & Patrizio, P. Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Hum. Reprod. Update 21, 411–426 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, T. Y. & Chu, T. Y. The Chinese experience of male infertility. West. J. Nurs. Res. 23, 714–725 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Obst, K. L., Oxlad, M., Turnbull, D. & McPherson, N. O. “No one asked me if I’m alright”: a mixed-methods study exploring information/support needs and challenges engaging men diagnosed with male-factor infertility. Am. J. Mens Health 17, 15579883231209210 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sejbaek, C. S. et al. Depression among men in ART treatment: a register-based national cohort study. Hum. Reprod. Open. 2020, hoaa019 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fisher, J. R., Baker, G. H. & Hammarberg, K. Long-term health, well-being, life satisfaction, and attitudes toward parenthood in men diagnosed as infertile: challenges to gender stereotypes and implications for practice. Fertil. Steril. 94, 574–580 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Greil, A. L., Slauson-Blevins, K. & McQuillan, J. The experience of infertility: a review of recent literature. Sociol. Health Illn. 32, 140–162 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Institute for Health Metrics and Evaluation. Global burden of disease (GBD): institute for health metrics and evaluation. Institute for Health Metrics and Evaluation https://www.healthdata.org/research-analysis/gbd-data?trk=public_post-text (2021).

  • Latif, T. et al. Semen quality as a predictor of subsequent morbidity: a Danish cohort study of 4,712 men with long-term follow-up. Am. J. Epidemiol. 186, 910–917 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Inhorn, M. C. Global infertility and the globalization of new reproductive technologies: illustrations from Egypt. Soc. Sci. Med. 56, 1837–1851 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Dyer, S. J., Abrahams, N., Mokoena, N. E. & van der Spuy, Z. M. ‘You are a man because you have children’: experiences, reproductive health knowledge and treatment-seeking behaviour among men suffering from couple infertility in South Africa. Hum. Reprod. 19, 960–967 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Björndahl, L. & Kirkman Brown, J. The sixth edition of the WHO laboratory manual for the examination and processing of human semen: ensuring quality and standardization in basic examination of human ejaculates. Fertil. Steril. 117, 246–251 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, C. & Swerdloff, R. S. Limitations of semen analysis as a test of male fertility and anticipated needs from newer tests. Fertil. Steril. 102, 1502–1507 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pasqualotto, F. F. et al. High percentage of abnormal semen parameters in a prevasectomy population. Fertil. Steril. 85, 954–960 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Bonde, J. P. et al. Relation between semen quality and fertility: a population-based study of 430 first-pregnancy planners. Lancet 352, 1172–1177 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guzick, D. S. et al. Sperm morphology, motility, and concentration in fertile and infertile men. N. Engl. J. Med. 345, 1388–1393 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Esteves, S. C. Evolution of the World Health Organization semen analysis manual: where are we? Nat. Rev. Urol. 19, 439–446 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zavos, P. M. & Goodpasture, J. C. Clinical improvements of specific seminal deficiencies via intercourse with a seminal collection device versus masturbation. Fertil. Steril. 51, 190–193 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pound, N., Javed, M. H., Ruberto, C., Shaikh, M. A. & Del Valle, A. P. Duration of sexual arousal predicts semen parameters for masturbatory ejaculates. Physiol. Behav. 76, 685–689 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • World Health Organization. WHO laboratory manual for the examination and processing of human semen 5th edn (World Health Organization, 2010).

  • Slama, R. et al. Time to pregnancy and semen parameters: a cross-sectional study among fertile couples from four European cities. Hum. Reprod. 17, 503–515 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ayala, C., Steinberger, E. & Smith, D. P. The influence of semen analysis parameters on the fertility potential of infertile couples. J. Androl. 17, 718–725 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zinaman, M. J., Brown, C. C., Selevan, S. G. & Clegg, E. D. Semen quality and human fertility: a prospective study with healthy couples. J. Androl. 21, 145–153 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keihani, S. et al. Semen parameter thresholds and time-to-conception in subfertile couples: how high is high enough? Hum. Reprod. 36, 2121–2133 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, L. et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum. Reprod. 27, 2908–2917 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cissen, M. et al. Measuring sperm DNA fragmentation and clinical outcomes of medically assisted reproduction: a systematic review and meta-analysis. PLoS ONE 11, e0165125 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simon, L., Zini, A., Dyachenko, A., Ciampi, A. & Carrell, D. T. A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome. Asian J. Androl. 19, 80–90 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Tan, J., Taskin, O., Albert, A. & Bedaiwy, M. A. Association between sperm DNA fragmentation and idiopathic recurrent pregnancy loss: a systematic review and meta-analysis. Reprod. Biomed. Online 38, 951–960 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agarwal, A. et al. Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios. Transl. Androl. Urol. 5, 935–950 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andrabi, S. W. et al. Fragmentation: causes, evaluation and management in male infertility. JBRA Assist. Reprod. 28, 306–319 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newman, H., Catt, S., Vining, B., Vollenhoven, B. & Horta, F. DNA repair and response to sperm DNA damage in oocytes and embryos, and the potential consequences in ART: a systematic review. Mol. Hum. Reprod. 28, gaab071 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Peel, A., Saini, A., Deluao, J. C. & McPherson, N. O. Sperm DNA damage: the possible link between obesity and male infertility, an update of the current literature. Andrology 11, 1635–1652 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aitken, R. J. Impact of oxidative stress on male and female germ cells: implications for fertility. Reproduction 159, R189–R201 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones, R., Mann, T. & Sherins, R. Peroxidative breakdown of phospholipids in human spermatozoa, spermicidal properties of fatty acid peroxides, and protective action of seminal plasma. Fertil. Steril. 31, 531–537 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alvarez, J. G., Touchstone, J. C., Blasco, L. & Storey, B. T. Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity. J. Androl. 8, 338–348 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aitken, R. J. & Clarkson, J. S. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J. Reprod. Fertil. 81, 459–469 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bisht, S. & Dada, R. Oxidative stress: major executioner in disease pathology, role in sperm DNA damage and preventive strategies. Front. Biosci. 9, 420–447 (2017).

    Article 

    Google Scholar
     

  • O’Flaherty, C. & Matsushita-Fournier, D. Reactive oxygen species and protein modifications in spermatozoa. Biol. Reprod. 97, 577–585 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Castleton, P. et al. MiOXSYS® and OxiSperm® II assays appear to provide no clinical utility for determining oxidative stress in human sperm-results from repeated semen collections. Andrology 11, 1566–1578 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heller, C. G. & Clermont, Y. Spermatogenesis in man: an estimate of its duration. Science 140, 184–186 (1963).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lyons, H. E. et al. The influence of lifestyle and biological factors on semen variability. J. Assist. Reprod. Genet. 41, 1097–1109 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. X. et al. Association between body mass index and semen quality: a systematic review and meta-analysis. Int. J. Obes. 48, 1383–1401 (2024).


    Google Scholar
     

  • Service, C. A., Puri, D., Al Azzawi, S., Hsieh, T. C. & Patel, D. P. The impact of obesity and metabolic health on male fertility: a systematic review. Fertil. Steril. 120, 1098–1111 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palmer, N. O., Bakos, H. W., Fullston, T. & Lane, M. Impact of obesity on male fertility, sperm function and molecular composition. Spermatogenesis 2, 253–263 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leisegang, K., Sengupta, P., Agarwal, A. & Henkel, R. Obesity and male infertility: mechanisms and management. Andrologia 53, e13617 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Neto, F. T., Bach, P. V., Najari, B. B., Li, P. S. & Goldstein, M. Spermatogenesis in humans and its affecting factors. Semin. Cell Dev. Biol. 59, 10–26 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Schneider, G., Kirschner, M. A., Berkowitz, R. & Ertel, N. H. Increased estrogen production in obese men. J. Clin. Endocrinol. Metab. 48, 633–638 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Boer, H., Verschoor, L., Ruinemans-Koerts, J. & Jansen, M. Letrozole normalizes serum testosterone in severely obese men with hypogonadotropic hypogonadism. Diabetes Obes. Metab. 7, 211–215 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Escobar-Morreale, H. F., Santacruz, E., Luque-Ramírez, M. & Botella Carretero, J. I. Prevalence of ‘obesity-associated gonadal dysfunction’ in severely obese men and women and its resolution after bariatric surgery: a systematic review and meta-analysis. Hum. Reprod. Update 23, 390–408 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Silva, N. L. et al. Male hypogonadism: pathogenesis, diagnosis, and management. Lancet Diabetes Endocrinol. 12, 761–774 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Yeh, S. et al. Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues. Proc. Natl Acad. Sci. USA 99, 13498–13503 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, L. B. & Walker, W. H. The regulation of spermatogenesis by androgens. Semin. Cell Dev. Biol. 30, 2–13 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gutorova, N. V., Kleshchyov, M. A., Tipisova, E. V. & Osadchuk, L. V. Effects of overweight and obesity on the spermogram values and levels of reproductive hormones in the male population of the European north of Russia. Bull. Exp. Biol. Med. 157, 95–98 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jensen, T. K. et al. Body mass index in relation to semen quality and reproductive hormones among 1,558 Danish men. Fertil. Steril. 82, 863–870 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. & Ding, Z. Obesity, a serious etiologic factor for male subfertility in modern society. Reproduction 154, R123–R131 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Diamanti-Kandarakis, E. et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr. Rev. 30, 293–342 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, N. & Singh, A. K. Impact of environmental factors on human semen quality and male fertility: a narrative review. Environ. Sci. Eur. 34, 1–13 (2022).

    Article 

    Google Scholar
     

  • Ge, R. S., Chen, G. R., Tanrikut, C. & Hardy, M. P. Phthalate ester toxicity in Leydig cells: developmental timing and dosage considerations. Reprod. Toxicol. 23, 366–373 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garza, S. et al. Mitochondrial dynamics, Leydig cell function, and age-related testosterone deficiency. FASEB J. 36, e22637 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ješeta, M. et al. Overview of the mechanisms of action of selected bisphenols and perfluoroalkyl chemicals on the male reproductive axes. Front. Genet. 12, 692897 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knez, J., Kranvogl, R., Breznik, B. P., Vončina, E. & Vlaisavljević, V. Are urinary bisphenol A levels in men related to semen quality and embryo development after medically assisted reproduction? Fertil. Steril. 101, 215–221.e5 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Radwan, M. et al. Urinary bisphenol A levels and male fertility. Am. J. Mens Health 12, 2144–2151 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adoamnei, E. et al. Urinary bisphenol A concentrations are associated with reproductive parameters in young men. Env. Res. 161, 122–128 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lü, L. et al. Exposure interferes with reproductive hormones and decreases sperm counts: a systematic review and meta-analysis of epidemiological studies. Toxics 12, 294 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldstone, A. E., Chen, Z., Perry, M. J., Kannan, K. & Louis, G. M. Urinary bisphenol A and semen quality, the LIFE study. Reprod. Toxicol. 51, 7–13 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeseta, M. et al. Cross sectional study on exposure to BPA and its analogues and semen parameters in Czech men. Env. Pollut. 345, 123445 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Mruk, D. D. & Cheng, C. Y. The mammalian blood-testis barrier: its biology and regulation. Endocr. Rev. 36, 564–591 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siu, E. R. et al. An occludin-focal adhesion kinase protein complex at the blood-testis barrier: a study using the cadmium model. Endocrinology 150, 3336–3344 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung, N. P. & Cheng, C. Y. Is cadmium chloride-induced inter-Sertoli tight junction permeability barrier disruption a suitable in vitro model to study the events of junction disassembly during spermatogenesis in the rat testis? Endocrinology 142, 1878–1888 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • el-Sabeawy, F. et al. Treatment of rats during pubertal development with 2,3,7,8-tetrachlorodibenzo-p-dioxin alters both signaling kinase activities and epidermal growth factor receptor binding in the testis and the motility and acrosomal reaction of sperm. Toxicol. Appl. Pharmacol. 150, 427–442 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • World Health Organization. Dioxins. WHO https://www.who.int/news-room/fact-sheets/detail/dioxins-and-their-effects-on-human-health (2023).

  • Xiao, X. et al. Differential effects of c-Src and c-Yes on the endocytic vesicle-mediated trafficking events at the Sertoli cell blood-testis barrier: an in vitro study. Am. J. Physiol. Endocrinol. Metab. 307, E553–E562 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao, X., Mruk, D. D., Cheng, F. L. & Cheng, C. Y. C-Src and c-Yes are two unlikely partners of spermatogenesis and their roles in blood-testis barrier dynamics. Adv. Exp. Med. Biol. 763, 295–317 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mocarelli, P. et al. Dioxin exposure, from infancy through puberty, produces endocrine disruption and affects human semen quality. Environ. Health Perspect. 116, 70–77 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quintanilla-Vega, B. et al. Lead interaction with human protamine (HP2) as a mechanism of male reproductive toxicity. Chem. Res. Toxicol. 13, 594–600 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ratcliffe, J. M. et al. Semen quality in papaya workers with long term exposure to ethylene dibromide. Br. J. Ind. Med. 44, 317–326 (1987).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schrader, S. M., Turner, T. W. & Ratcliffe, J. M. The effects of ethylene dibromide on semen quality: a comparison of short-term and chronic exposure. Reprod. Toxicol. 2, 191–198 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amir, D. The spermicidal effect of ethylene dibromide in bulls and rams. Mol. Reprod. Dev. 28, 99–109 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meistrich, M. L. Effects of chemotherapy and radiotherapy on spermatogenesis in humans. Fertil. Steril. 100, 1180–1186 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duffin, K. et al. Impacts of cancer therapy on male fertility: past and present. Mol. Aspects Med. 100, 101308 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vakalopoulos, I., Dimou, P., Anagnostou, I. & Zeginiadou, T. Impact of cancer and cancer treatment on male fertility. Hormones 14, 579–589 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Aitken, R. J., Smith, T. B., Jobling, M. S., Baker, M. A. & De Iuliis, G. N. Oxidative stress and male reproductive health. Asian J. Androl. 16, 31–38 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wright, C., Milne, S. & Leeson, H. Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Reprod. Biomed. Online 28, 684–703 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aitken, R. J., Jones, K. T. & Robertson, S. A. Reactive oxygen species and sperm function-in sickness and in health. J. Androl. 33, 1096–1106 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aitken, R. J., Drevet, J. R., Moazamian, A. & Gharagozloo, P. Male infertility and oxidative stress: a focus on the underlying mechanisms. Antioxidants 11, 306 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aitken, R. J., Wingate, J. K., De Iuliis, G. N., Koppers, A. J. & McLaughlin, E. A. Cis-unsaturated fatty acids stimulate reactive oxygen species generation and lipid peroxidation in human spermatozoa. J. Clin. Endocrinol. Metab. 91, 4154–4163 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aitken, R. J. et al. Electrophilic aldehydes generated by sperm metabolism activate mitochondrial reactive oxygen species generation and apoptosis by targeting succinate dehydrogenase. J. Biol. Chem. 287, 33048–33060 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calamera, J., Buffone, M., Ollero, M., Alvarez, J. & Doncel, G. F. Superoxide dismutase content and fatty acid composition in subsets of human spermatozoa from normozoospermic, asthenozoospermic, and polyzoospermic semen samples. Mol. Reprod. Dev. 66, 422–430 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aitken, R. J., Clarkson, J. S. & Fishel, S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol. Reprod. 41, 183–197 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanocka, D. & Kurpisz, M. Reactive oxygen species and sperm cells. Reprod. Biol. Endocrinol. 2, 12 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aitken, R. J., Gibb, Z., Baker, M. A., Drevet, J. & Gharagozloo, P. Causes and consequences of oxidative stress in spermatozoa. Reprod. Fertil. Dev. 28, 1–10 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aboulmaouahib, S. et al. Impact of alcohol and cigarette smoking consumption in male fertility potential: looks at lipid peroxidation, enzymatic antioxidant activities and sperm DNA damage. Andrologia 50, e12926 (2018).

    Article 

    Google Scholar
     

  • He, Y. et al. Ketamine inhibits human sperm function by Ca2+-related mechanism. Biochem. Biophys. Res. Commun. 478, 501–506 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Safarinejad, M. R. et al. The effects of opiate consumption on serum reproductive hormone levels, sperm parameters, seminal plasma antioxidant capacity and sperm DNA integrity. Reprod. Toxicol. 36, 18–23 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amor, H., Hammadeh, M. E., Mohd, I. & Jankowski, P. M. Impact of heavy alcohol consumption and cigarette smoking on sperm DNA integrity. Andrologia 54, e14434 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nazmara, Z. et al. Correlation between protamine-2 and miRNA-122 in sperm from heroin-addicted men: a case-control study. Urol. J. 17, 638–644 (2020).

    PubMed 

    Google Scholar
     

  • Imhof ML, J. Lipovac, M. Chedraui, P. Riedl, C. Improvement of sperm quality after micronutrient supplementation. ESPEN J. 7, e50–e53 (2012).


    Google Scholar
     

  • Nguyen, N. D., Le, M. T., Tran, N. Q. T., Nguyen, Q. H. V. & Cao, T. N. Micronutrient supplements as antioxidants in improving sperm quality and reducing DNA fragmentation. Basic. Clin. Androl. 33, 23 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lipovac, M., Nairz, V., Aschauer, J. & Riedl, C. The effect of micronutrient supplementation on spermatozoa DNA integrity in subfertile men and subsequent pregnancy rate. Gynecol. Endocrinol. 37, 711–715 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Komiya, A. et al. Results of lifestyle modification promotion and reproductive/general health check for male partners of couples seeking conception. Heliyon 9, e15203 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eisenberg, M. L. et al. Semen quality, infertility and mortality in the USA. Hum. Reprod. 29, 1567–1574 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Del Giudice, F. et al. The association between mortality and male infertility: systematic review and meta-analysis. Urology 154, 148–157 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Glazer, C. H. et al. Male factor infertility and risk of death: a nationwide record-linkage study. Hum. Reprod. 34, 2266–2273 (2019).

    PubMed 

    Google Scholar
     

  • Shiraishi, K. & Matsuyama, H. Effects of medical comorbidity on male infertility and comorbidity treatment on spermatogenesis. Fertil. Steril. 110, 1006–11.e2 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ventimiglia, E. et al. Infertility as a proxy of general male health: results of a cross-sectional survey. Fertil. Steril. 104, 48–55 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Hales C. M., Carroll M. D., Fryar C. D., Ogden C. L. Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS Data Brief. 1–8 (2020).

  • Hales, C. N. Metabolic consequences of intrauterine growth retardation. Acta Paediatr. 86, 184–187 (1997).

    Article 

    Google Scholar
     

  • Yeh, T. L. et al. The relationship between metabolically healthy obesity and the risk of cardiovascular disease: a systematic review and meta-analysis. J. Clin. Med. 8, 1228 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salas-Huetos, A. et al. Male adiposity, sperm parameters and reproductive hormones: an updated systematic review and collaborative meta-analysis. Obes. Rev. 22, e13082 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sepidarkish, M. et al. The effect of body mass index on sperm DNA fragmentation: a systematic review and meta-analysis. Int. J. Obes. 44, 549–558 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lotti, F., Marchiani, S., Corona, G. & Maggi, M. Metabolic syndrome and reproduction. Int. J. Mol. Sci. 22, 1988 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ehala-Aleksejev, K. & Punab, M. The effect of metabolic syndrome on male reproductive health: a cross-sectional study in a group of fertile men and male partners of infertile couples. PLoS ONE 13, e0194395 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dupont, C. et al. Metabolic syndrome and smoking are independent risk factors of male idiopathic infertility. Basic. Clin. Androl. 29, 9 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, L. & Pang, A. Effects of metabolic syndrome on semen quality and circulating sex hormones: a systematic review and meta-analysis. Front. Endocrinol. 11, 428 (2020).

    Article 

    Google Scholar
     

  • Pergialiotis, V. et al. Diabetes mellitus and functional sperm characteristics: a meta-analysis of observational studies. J. Diabetes Complications 30, 1167–1176 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Torres, M. et al. Male fertility is reduced by chronic intermittent hypoxia mimicking sleep apnea in mice. Sleep 37, 1757–1765 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McLachlan, R. I. Approach to the patient with oligozoospermia. J. Clin. Endocrinol. Metab. 98, 873–880 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lundy, S. D. & Vij, S. C. Male infertility in renal failure and transplantation. Transl. Androl. Urol. 8, 173–181 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Q. F. et al. Does COVID-19 affect sperm quality in males? the answer may be yes, but only temporarily. Virol. J. 21, 24 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Basaria, S. Male hypogonadism. Lancet 383, 1250–1263 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bojesen, A., Juul, S. & Gravholt, C. H. Prenatal and postnatal prevalence of Klinefelter syndrome: a national registry study. J. Clin. Endocrinol. Metab. 88, 622–626 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herlihy, A. S., Halliday, J. L., Cock, M. L. & McLachlan, R. I. The prevalence and diagnosis rates of Klinefelter syndrome: an Australian comparison. Med. J. Aust. 194, 24–28 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Deebel, N. A., Bradshaw, A. W. & Sadri-Ardekani, H. Infertility considerations in Klinefelter syndrome: from origin to management. Best. Pract. Res. Clin. Endocrinol. Metab. 34, 101480 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanakis, G. A. & Nieschlag, E. Klinefelter syndrome: more than hypogonadism. Metabolism 86, 135–144 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clemente-Suárez, V. J., Beltrán-Velasco, A. I., Redondo-Flórez, L., Martín-Rodríguez, A. & Tornero-Aguilera, J. F. Global impacts of western diet and its effects on metabolism and health: a narrative review. Nutrients 15, 2749 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naidu, R. et al. Chemical pollution: a growing peril and potential catastrophic risk to humanity. Env. Int. 156, 106616 (2021).

    Article 
    CAS 

    Google Scholar
     

  • World Health Organization. Overweight prevalence among children under 5 years of age (%weight-for-height >+2 SD). WHO https://www.who.int/data/gho/data/indicators/indicator-details/GHO/gho-jme-country-children-aged-5-years-overweight-(-weight-for-height-2-sd) (2025).

  • World Health Organisation. Global status report on noncommunicable diseases 2010. (World Health Organisation, 2011).

  • Heindel, J. J., Lustig, R. H., Howard, S. & Corkey, B. E. Obesogens: a unifying theory for the global rise in obesity. Int. J. Obes. 48, 449–460 (2024).

    Article 

    Google Scholar
     

  • Cancer Australia. Cancer incidence. Cancer Australia https://ncci.canceraustralia.gov.au/diagnosis/cancer-incidence/cancer-incidence (2024).

  • van Oostrom, S. H. et al. Time trends in prevalence of chronic diseases and multimorbidity not only due to aging: data from general practices and health surveys. PLoS ONE 11, e0160264 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ward, B. W. & Schiller, J. S. Prevalence of multiple chronic conditions among US adults: estimates from the National Health Interview Survey, 2010. Prev. Chronic Dis. 10, E65 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cristodoro, M., Zambella, E., Fietta, I., Inversetti, A. & Di Simone, N. Dietary patterns and fertility. Biology 13, 131 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salas-Huetos, A., Babio, N., Carrell, D. T., Bulló, M. & Salas-Salvadó, J. Adherence to the Mediterranean diet is positively associated with sperm motility: a cross-sectional analysis. Sci. Rep. 9, 3389 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ricci, E. et al. Semen quality and alcohol intake: a systematic review and meta-analysis. Reprod. Biomed. Online 34, 38–47 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaskins, A. J., Colaci, D. S., Mendiola, J., Swan, S. H. & Chavarro, J. E. Dietary patterns and semen quality in young men. Hum. Reprod. 27, 2899–2907 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caruso, P. et al. Effects of Mediterranean diet on semen parameters in healthy young adults: a randomized controlled trial. Minerva Endocrinol. 45, 280–287 (2020).

    PubMed 

    Google Scholar
     

  • Montano, L. et al. Effects of a lifestyle change intervention on semen quality in healthy young men living in highly polluted areas in Italy: the FASt randomized controlled trial. Eur. Urol. Focus. 8, 351–359 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Walsh, T. J., Croughan, M. S., Schembri, M., Chan, J. M. & Turek, P. J. Increased risk of testicular germ cell cancer among infertile men. Arch. Intern. Med. 169, 351–356 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walsh, T. J. et al. Increased risk of high-grade prostate cancer among infertile men. Cancer 116, 2140–2147 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Eisenberg, M. L., Li, S., Brooks, J. D., Cullen, M. R. & Baker, L. C. Increased risk of cancer in infertile men: analysis of U.S. claims data. J. Urol. 193, 1596–1601 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Hanson, H. A. et al. Subfertility increases risk of testicular cancer: evidence from population-based semen samples. Fertil. Steril. 105, 322–8.e1 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Schultz, N., Hamra, F. K. & Garbers, D. L. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc. Natl Acad. Sci. USA 100, 12201–12206 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukherjee, S., Ridgeway, A. D. & Lamb, D. J. DNA mismatch repair and infertility. Curr. Opin. Urol. 20, 525–532 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belladelli, F., Basran, S. & Eisenberg, M. L. Male fertility and physical exercise. World J. Mens Health 41, 482–488 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaskins, A. J. et al. Paternal physical and sedentary activities in relation to semen quality and reproductive outcomes among couples from a fertility center. Hum. Reprod. 29, 2575–2582 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • American Heart Association. Lifestyle changes to prevent a heart attack. American Heart Association https://www.heart.org/en/health-topics/heart-attack/life-after-a-heart-attack/lifestyle-changes-for-heart-attack-prevention (2025).

  • Mayo Clinic. Strategies to prevent heart disease. Mayo Clinic https://www.mayoclinic.org/diseases-conditions/heart-disease/in-depth/heart-disease-prevention/art-20046502 (2023).

  • Kim, H. L. et al. Lifestyle modification in the management of metabolic syndrome: statement from Korean society of cardiometabolic syndrome (KSCMS). Korean Circ. J. 52, 93–109 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oh, S., Kim, E. & Shoda, J. Editorial: lifestyle modification strategies as first line of chronic disease management. Front. Physiol. 14, 1204581 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greaves, C. J. et al. Systematic review of reviews of intervention components associated with increased effectiveness in dietary and physical activity interventions. BMC Public. Health 11, 119 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rhodes, R. E., Janssen, I., Bredin, S. S. D., Warburton, D. E. R. & Bauman, A. Physical activity: health impact, prevalence, correlates and interventions. Psychol. Health 32, 942–975 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Cleland, V. et al. Effectiveness of interventions to promote physical activity and/or decrease sedentary behaviour among rural adults: a systematic review and meta-analysis. Obes. Rev. 18, 727–741 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rippe, J. M. Lifestyle strategies for risk factor reduction, prevention, and treatment of cardiovascular disease. Am. J. Lifestyle Med. 13, 204–212 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Darkins, A., Kendall, S., Edmonson, E., Young, M. & Stressel, P. Reduced cost and mortality using home telehealth to promote self-management of complex chronic conditions: a retrospective matched cohort study of 4,999 veteran patients. Telemed. J. E Health 21, 70–76 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Darkins, A. et al. Care coordination/home telehealth: the systematic implementation of health informatics, home telehealth, and disease management to support the care of veteran patients with chronic conditions. Telemed. J. E Health 14, 1118–1126 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • McCarthy D. Kaiser Permanente: bridging the quality divide with integrated practice, group accountability, and health information technology. The Commonwealth Fund https://www.commonwealthfund.org/publications/case-study/2009/jun/kaiser-permanente-bridging-quality-divide-integrated-practice (2009).

  • Rivera, A. & Scholar, J. Traditional masculinity: a review of toxicity rooted in social norms and gender socialization. ANS Adv. Nurs. Sci. 43, E1–E10 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Burton M. Negotiating masculinity: how infertility impacts hegemonic masculinity. LUJA 1, 49–57 (2014).


    Google Scholar
     

  • Pakpahan, C. et al. “Masculine?” A metasynthesis of qualitative studies on traditional masculinity on infertility. F1000Res 12, 252 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trussell, J. C. et al. Association between testosterone, semen parameters, and live birth in men with unexplained infertility in an intrauterine insemination population. Fertil. Steril. 111, 1129–1134 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cervi LK, D. Organising male infertility: masculinities and fertility treatment. Gend. Work. Organ. 29, 1113–1131 (2022).

    Article 

    Google Scholar
     

  • Clarke, M. J., Marks, A. D. & Lykins, A. D. Effect of normative masculinity on males’ dysfunctional sexual beliefs, sexual attitudes, and perceptions of sexual functioning. J. Sex. Res. 52, 327–337 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Malik, S. H. & Coulson, N. The male experience of infertility: a thematic analysis of an online infertility support group bulletin board. J. Reprod. Infant Psychol. 26, 18–30 (2008).

    Article 

    Google Scholar
     

  • Peronace, L. A., Boivin, J. & Schmidt, L. Patterns of suffering and social interactions in infertile men: 12 months after unsuccessful treatment. J. Psychosom. Obstet. Gynaecol. 28, 105–114 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Culley, L., Hudson, N. & Lohan, M. Where are all the men? The marginalization of men in social scientific research on infertility. Reprod. Biomed. Online 27, 225–235 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Wischmann, T. & Thorn, P. (Male) infertility: what does it mean to men? New evidence from quantitative and qualitative studies. Reprod. Biomed. Online 27, 236–243 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Mikkelsen, A. T., Madsen, S. A. & Humaidan, P. Psychological aspects of male fertility treatment. J. Adv. Nurs. 69, 1977–1986 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Arya, S. T. & Dibb, B. The experience of infertility treatment: the male perspective. Hum. Fertil. 19, 242–248 (2016).

    Article 

    Google Scholar
     

  • Tabong, P. T. & Adongo, P. B. Understanding the social meaning of infertility and childbearing: a qualitative study of the perception of childbearing and childlessness in Northern Ghana. PLoS ONE 8, e54429 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inhorn, M. C. Middle Eastern masculinities in the age of new reproductive technologies: male infertility and stigma in Egypt and Lebanon. Med. Anthropol. Q. 18, 162–182 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Serour, G. I. & Serour, A. G. The impact of religion and culture on medically assisted reproduction in the Middle East and Europe. Reprod. Biomed. Online 43, 421–433 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Nimbi, F. M., Tripodi, F., Rossi, R., Navarro-Cremades, F. & Simonelli, C. Male sexual desire: an overview of biological, psychological, sexual, relational, and cultural factors influencing desire. Sex. Med. Rev. 8, 59–91 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Coward, R. M. et al. Fertility related quality of life, gonadal function and erectile dysfunction in male partners of couples with unexplained infertility. J. Urol. 202, 379–384 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ozkan, B., Orhan, E., Aktas, N. & Coskuner, E. R. Depression and sexual dysfunction in Turkish men diagnosed with infertility. Urology 85, 1389–1393 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Mahalik, J. R., Di Bianca, M. & Sepulveda, J. Examining father status and purpose to understand new days’ healthier lives. Psychol. Men. Masc. 21, 570–577 (2020).

    Article 

    Google Scholar
     

  • Lewington, L., Sebar, B. & Lee, J. “Becoming the man you always wanted to be”: exploring the representation of health and masculinity in Men’s Health magazine. Health Promot. J. Austr. 29, 243–250 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • De Jonge, C. J. et al. Current global status of male reproductive health. Hum. Reprod. Open. 2024, hoae017 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Jonge, C. & Barratt, C. L. R. The present crisis in male reproductive health: an urgent need for a political, social, and research roadmap. Andrology 7, 762–768 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Torkel, S. et al. Barriers and enablers to a healthy lifestyle in people with infertility: a mixed-methods systematic review. Hum. Reprod. Update 30, 569–583 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Healthy male. A case for change. Healthy Male https://healthymale.org.au/plus-paternal/a-case-for-change (2024).

  • Vargas, C., Whelan, J., Brimblecombe, J. & Allender, S. Co-creation, co-design, co-production for public health — a perspective on definition and distinctions. Public Health Res Pract. 32, 3222211 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Slattery, P., Saeri, A. K. & Bragge, P. Research co-design in health: a rapid overview of reviews. Health Res. Policy Syst. 18, 17 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanz, M. F., Acha, B. V. & García, M. F. Co-design for people-centred care digital solutions: a literature review. Int. J. Integr. Care 21, 16 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ng, S. K., Martin, S. A., Adams, R. J., O’Loughlin, P. & Wittert, G. A. The effect of multimorbidity patterns and the impact of comorbid anxiety and depression on primary health service use: the men androgen inflammation lifestyle environment and stress (MAILES) study. Am. J. Mens. Health 14, 1557988320959993 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mursa, R., Patterson, C. & Halcomb, E. Men’s help-seeking and engagement with general practice: an integrative review. J. Adv. Nurs. 78, 1938–1953 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGraw, J., White, K. M. & Russell-Bennett, R. Masculinity and men’s health service use across four social generations: findings from Australia’s Ten to Men study. SSM Popul. Health 15, 100838 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Håkonsen, L. B. et al. Does weight loss improve semen quality and reproductive hormones? results from a cohort of severely obese men. Reprod. Health 8, 24 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faure, C. et al. In subfertile couple, abdominal fat loss in men is associated with improvement of sperm quality and pregnancy: a case-series. PLoS ONE 9, e86300 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rafiee, B., Morowvat, M. H. & Rahimi-Ghalati, N. Comparing the effectiveness of dietary vitamin C and exercise interventions on fertility parameters in normal obese men. Urol. J. 13, 2635–2639 (2016).

    PubMed 

    Google Scholar
     

  • Rosety, M. et al. Exercise improved semen quality and reproductive hormone levels in sedentary obese adults. Nutr. Hosp. 34, 603–607 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Mir J., Franken D., Andrabi S. W., Ashraf M., Rao K. Impact of weight loss on sperm DNA integrity in obese men. Andrologia 50, e12957 (2018).

    Article 

    Google Scholar
     

  • Jaffar, M. & Ashraf, M. Does weight loss improve fertility with respect to semen parameters — results from a large cohort study. Int. J. Infertil. Fetal Med. 8, 12–17 (2017).


    Google Scholar
     

  • Bisht, S. et al. Sperm methylome alterations following yoga-based lifestyle intervention in patients of primary male infertility: a pilot study. Andrologia 52, e13551 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mombeyni, A., Shakerian, S., Habibi, A. & Ghanbarzadeh, M. The effect of 12 weeks of concurrent training on hypothalamic-pituitary-gonadal axis hormones and semen fertility indices of sedentary obese men. Med. Sport 74, 269–283 (2021).

    Article 

    Google Scholar
     

  • Andersen, E. et al. Sperm count is increased by diet-induced weight loss and maintained by exercise or GLP-1 analogue treatment: a randomized controlled trial. Hum. Reprod. 37, 1414–1422 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Humaidan, P. et al. The combined effect of lifestyle intervention and antioxidant therapy on sperm DNA fragmentation and seminal oxidative stress in IVF patients: a pilot study. Int. Braz. J. Urol. 48, 131–156 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ismail, A., Abdelghany, A. & Atef, H. Response of testosterone and semen parameters to a 14-week aerobic training in sedentary obese men with hyperglycaemia. Physiother. Q. 31, 28–33 (2023).

    Article 

    Google Scholar
     

  • Sharma, A. et al. Improvements in sperm motility following low- or high-intensity dietary interventions in men with obesity. J. Clin. Endocrinol. Metab. 109, 449–460 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Source link

    Visited 1 times, 1 visit(s) today

    Leave a Reply

    Your email address will not be published. Required fields are marked *